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Abstract -
Conventional mobile robots rely on pre-built point cloud

maps for online localization. These map points are generally
built using specialized mapping techniques, which involve
high labor and computational costs. While in the archi-
tectural, engineering and construction (AEC) industry, as-
planned building information modelings (BIM) are available
for management and operation. In this paper, we consider
the use of the digital representations of BIM for robot lo-
calization in built environments. First, we convert BIM data
into localization-oriented point clouds, which is easy to imple-
ment and operate compared to relatively complex SLAM sys-
tems. Then, we perform iterative closest point (ICP)-based
localization on the metric map using a laser scanner. The
experiments are tested using collected laser data and BIM in
the real world. The results show that ICP-based localization
can track the robot pose with low errors (< [0.20m, 2.50◦]),
thus demonstrating the feasibility of BIM-based robot local-
ization. In addition, we also discuss the reasons for errors,
including the deviations between as-planned BIM and as-
built status.
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1 Introduction

Precise localization is a fundamental capability for mo-
bile robots. Almost all mobile robots, whether teleoper-
ated or autonomous, require the robot pose to be estimated
by the localization module to achieve safe human opera-
tion or self navigation in complex environments. In the
robotics community, many simultaneous localization and
mapping (SLAM) systems [1, 2] have been developed to
achieve both mapping and localization when the robot is
traveling in the real world.
For some long-term robots that operate under stable

conditions such as a quadruped robot working on building
inspection, themapping process of SLAM is redundant be-
cause the generated map is almost invariant in each time of
SLAM. To solve this problem, researchers in the robotics
community proposed to achieve mapping first and then

robot localization in the known map [3, 4]. In this con-
text, map building is required only once and localization
in the map could handle the pose estimation for long-term
operation, reducing the complexity of repetitive SLAM
processes. This two-step workflow has been widely used
in various fields of robotics and a typical application is
self-driving cars [5].
The mapping step in this workflow is generally based

on SLAM or other techniques, which can be considered
as a measuring or sensing process of the environment.
However, some modeling or representations are directly
available in the AEC industry, such as computer-aided de-
sign (CAD) or BIM. These map-like representations also
contain informative measurements. Thus, we hypothesize
SLAMmay not always be necessary when these are avail-
able. Moreover, BIM has been raised to replace CAD
in recent years. We believe that robot localization in a
as-designed BIM could be a good choice in built environ-
ment.
One might argue that BIM is designed for construction

and building management, which is not a localization-
oriented map essentially. In this paper, we present a BIM-
to-Map process to convert the digital representations of
BIM into point cloud maps for robot localization. We
also utilize a point-to-plane ICP-based method to local-
ize the robot on the BIM-generated map, thus bridging
the gap from design modeling to robotic navigation in
the real world. In addition, there are deviations between
as-planned BIM and as-built buildings in the real-world,
which brings potential difficulties to online robot localiza-
tion. To address this problem, we present a real-world case
study to test BIM-based robot localization using a rotating
Light Detection and Ranging (LiDAR) scanner. Overall,
the contributions can be summarized as follows:

• A BIM-based robot localization workflow is pre-
sented to achieve precise pose estimation in the built
environment. The prior maps are built with BIM-to-
Map conversion without complex SLAM systems.

• We conduct experiments in the real world. The ex-
perimental results show that the proposed workflow
can track the robot pose with only a LiDAR scanner
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Figure 1. The workflow of BIM-based localization in this paper. We first convert BIM to metric point cloud
maps storey by storey. Then based on the localization-oriented maps, mobile robot localization can be achieved
using sensor units. In this paper, we perform a case study on 3D LiDAR localization in BIM at NUS campus.

and BIM.

2 Related Work
Many research publications have reviewed related robot

navigation topics from different standpoints, including
deep learning-based [6], specific sensor-based [7, 8, 9],
etc. In this paper, we present some related work on CAD
or BIM-based mobile robot navigation.

Intuitively, floor plans or 2D points can be generated
from CAD models for lightweight 2D localization. In
[10], point clouds were extracted from CAD models to
achieve radar localization via multi-modal registration.
Researchers in [11] proposed to localize a 2D laser scanner
on floor plans and hand-drawn maps using stochastic gra-
dient descent. As for localization in 3D space, ICP-based
alignment is considered as an effective method to track the
robot pose [12]. Despite the point-based method, meshes
were also used for robot global localization without initial
guess in [13]. Recently, researchers in [14] proposed a
novel interface to connect building construction and map
representation, which could also detect deviations between
as-designed and as-built models via localization results.

Compared to traditional CAD models, BIM is more in-
teroperable in the construction industry and contains more
semantic information for robot navigation. For visual-
based pose estimation, photogrammetric point clouds can
be aligned to BIM model [15] for camera pose estimation
from scratch. With sequential input images, visual-based
pose tracking was demonstrated to be effective [16], in
which camera poses were estimated by aligning images to
BIMmodels. However, visual-based localization methods
are easily affected by illumination changes, while LiDAR-
based is more robust in long-term operation. In [17], BIM
was combined with LiDAR SLAM system to localize the

robot, but the experiments were conducted in simulated
environments. Researchers in [18] extracted semantic fea-
tures of BIM and achieved robot localization using 2D
laser scans in the real world. The results showed that
the robot can track its pose in BIM but the localization
performance was not evaluated quantitatively.
Inspired by the related works above, we can conclude

that it is feasible to use BIM for robot localization tasks.
However, in some previous works [16, 17], robot local-
ization modules were built on existing SLAM systems,
which makes the localization module complicated for real
robot applications. To address the problems, we propose
to localize the robot in BIM-based maps using lightweight
point cloud registration. Besides that, we evaluate the
localization accuracy quantitatively in the real world.

3 Workflow Description
As shown in Figure 1, the proposed workflow consists

of two parts: offline point cloud map generation fromBIM
and online ICP-based localization.

3.1 BIM to Point Cloud Map

As a promising direction in the construction industry,
BIM is supported by many tools and used in various con-
struction processes, such as building inspection [19] and
quality management [20]. For mobile robot localization,
metric maps are required rather than digital representa-
tions. In this context, the first challenge is that how to
generate localization-oriented maps from BIM files.
In this paper, we propose to convert BIM to localization-

oriented maps in three steps. The pipeline is shown in
Figure 1. Given a whole BIM of one building, we first
split the whole BIM into several separate BIM according
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to different storeys. After that, we use the open source tool
IfcOpenShell 1 to convert multiple BIM to CAD files. Fi-
nally, 3D point clouds are sampled from triangular meshes
with a density [21]. There are many other sampling strate-
gies in some software 23, such as Monte-Carlo Sampling.
Considering that density value is easy to be understood
and tuned, we decide to use this strategy in this paper. The
final point cloud maps can be regarded as submaps of each
floor in the building.
Note that it is better not to change the sequence of this

conversion. If we convert the whole BIM to CAD model
first without separation, the storey information of BIM is
not used. It is more challenging to split large CAD or
point cloud maps into storey-based submaps in the follow-
up steps. To simplify the conversion process, a promising
research direction is to generate point clouds or features
directly from the original BIM, which we conclude as a
future work in Section 5.

3.2 ICP-based Localization

With generated point cloud maps, there are many ex-
isting methods to localize the robot based on the onboard
sensors of mobile platform [4, 22]. Generally, a classi-
cal robot localization consists of two parts: odometry as
a motion module and data matching as a measurement
model. In this paper, to validate the effectiveness of the
proposed BIM-to-Map conversion process, the localiza-
tion system is simplified without odometry, which makes
the validation easy and efficient to use.
We use a mobile LiDAR scanner to validate the pro-

posed workflow. With the measured LiDAR scans, an ICP
algorithm is performed to register the laser points to gen-
erated maps from BIM. ICP is a widely used point cloud
registration method in the robotics community [23, 24].
Specifically, we use a point-to-plane ICP to achieve pose
estimation since there are many planar structures in the
building environment. Overall, the point-to-plane ICP-
based pose estimation can be formulated as follows:

(R, t) = arg min
(R,t)

(
 ∑
:=1
‖(Rp: + t − q: ) · n: ‖2

)
(1)

where is the number ofmatched data associations; (R, t)
is the rotation and translation of estimated robot pose; p
is the lidar points reading; q and n are the map points and
normal vectors respectively. At each timestamp, ICP will
minimize the error metric in Equation 1 as close to zero
as possible within a number of iterations.
As for implementation, open source library libpoint-

matcher [25] 4 is utilized. At each timestamp B, we use

1https://github.com/IfcOpenShell/IfcOpenShell
2https://www.meshlab.net/
3https://www.cloudcompare.org/
4https://github.com/ethz-asl/libpointmatcher

Velodyne VLP-16

Portable Power
Laptop

Figure 2. The devices that we used for data collection
and experimental validation.

Figure 3. Interior scenes in NUS SDE4 building

the estimated pose at timestamp B − 1 as the initial guess
of ICP registration. Random sampling on p is also used
to accelerate the online localization process.

4 Experiments
In this section, we first introduce the devices for data

collection and the places where we collected the data.
Then localization accuracy is evaluated by comparing it to
state-of-the-art LiDAR SLAM methods.

4.1 Set-up

To validate the effectiveness of the proposed workflow,
we collect several sequences using a handheld Velodyne
VLP-16 sensor in the real world. The data collection
devices are shown in Figure 2. All the data Sequences
are collected in the School of Design and Environment 4
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Figure 4. BIM-based localization trajectories compared to DLO
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(c) Sequence-3

Figure 5. Translation Errors
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(c) Sequence-3

Figure 6. Rotation Errors

Table 1. Localization Errors Compared to DLO

Sequence
Translation Error (m) Rotation Error (◦)

Max Mean RMSE Std Max Mean RMSE Std

1 0.56 0.13 0.17 0.12 6.82 2.37 2.50 0.80

2 0.60 0.09 0.14 0.10 2.70 0.57 0.64 0.30

3 0.76 0.11 0.14 0.08 9.00 0.61 0.84 0.58

(SDE4) building at NUS. The traveled distance is tens of
meters in each Sequence. We present some interior scenes
in Figure 3. The SDE4BIM can be viewed in Figure 1. All
the online localization experiments are performed using a
laptop with Intel I5-8265U and 16G RAM.

Ground truth poses are required to evaluate the ICP-
based localization. However, compared to outdoor au-
tonomous vehicles equipped with GPS/INS, it is challeng-
ing to collect ground truth poses in indoor scenes, espe-
cially for traveling across rooms and corridors in this paper.
We notice that a state-of-the-art lidar SLAM system, direct

LiDAR odometry (DLO) [26] 5, can provide accurate pose
estimation in DARPA Subterranean Challenge. Accord-
ing to the error analysis in [26], DLO achieves the best
performance compared to other LiDAR SLAM systems.
Thus, we set DLO as the “ground truth” for evaluation in
this paper.

4.2 Performance Evaluation

An open source toolbox rpg_trajectory_evaluation [27]
6 is used to measure the quantitative results. All poses

5https://github.com/vectr-ucla/direct_lidar_odometry
6https://github.com/uzh-rpg/rpg_trajectory_evaluation
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(a) Localization trajectory of Sequence-2 (b) pillar and window ledge

(c) Pose-A (d) Pose-B (e) Pose-C

Figure 7. We find that deviations between as-planned and as-built cause a sudden “jump” in the localization
trajectory. In 7b, the pillar is shown in the yellow box and the window ledge is shown in the red box for clearance.
In 7c, 7d and 7e, the green points represent measured LiDAR points and white points are generated map points
from BIM.

(R, t) are used to align the trajectories of DLO and BIM-
based localization. The initial robot poses are manually
fixed in the point cloud maps.
As shown in Figure 4, three data sequences are collected

for localization evaluation. Among the three sequences,
one is collected on the 2nd floor of SDE4 building and
two with loops are collected on the 3rd floor. We also
present numerical errors of entire trajectories in Table 1,
in which mean error is the mean of the absolute value of
each error. The translation and rotation error variations
are also presented in Figure 5 and Figure 6 with respect to
the traveling distance.
As observed from the errors, the proposed BIM-based

localization method can track the lidar scanner success-
fully with minor errors. In Table 1, the rotation errors
of Sequence-1 are larger than errors of Sequence-2 and
3. We consider this is due to several reasons, such as
the differences in map point distributions, traveling tra-
jectories, etc. Overall, most of the translation errors are
below 0.2m and rotation errors are below 2◦, which is
acceptable for indoor positioning systems, but still needs
to be improved for navigation applications in the future.
Compared to previous BIM-based pose estimation meth-

ods [15, 17], the proposed LiDAR localization can track
the sensor pose continuously and more accurately, even
though only scan matching is involved in our method.

4.3 As-Planned vs As-Built

We also notice that there are two large discrepancies
in Sequence-2 during robot localization, resulting in the
large errors seen in Figure 5b and Figure 6b. Three robot
poses A, B and C are selected in chronological order for
investigation, as shown in Figure 7a. Specifically, Pose-B
exhibits a large error compared to the ground truth. The
bird’s-eye-view of aligned LiDAR points and map points
are presented in Figure 7c, 7d and 7e for visualization.
In Figure 7c and 7e, the point cloud of the pillar (yellow

box) is aligned correctly but points of the window ledge
(red box) are not aligned. While in Figure 7d, the pillar
points are unaligned. Wemeasure the distance between the
unaligned ledge points using ROS Rviz and the deviation
distance is around 0.7m. Based on the analysis above, we
conclude that there is a deviation between as-planned BIM
and as-built construction status on the 3rd floor which lead
to the large localization errors in Sequence-2. On the other
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hand, compared to SLAM-based maps, we consider that
BIM-to-Map conversionwill not involvemeasurement and
estimation errors, which will provide higher-quality local
point clouds.

5 Conclusion and Future Work
A workflow of BIM-based robot localization is pre-

sented in this paper. We first convert BIM to metric point
cloud maps and then perform ICP- based localization to
localize a LiDAR sensor. In the experimental section, we
conduct a real-world case study at NUS campus. We also
find that the deviations between as-planned BIM and as-
built buildings bring localization errors in this workflow.

We consider there are several research directions to im-
prove the workflow, categorized as follows:

• More robust point cloud registration or alignment to
overcome the deviations from BIM. We consider the
semantic information of BIM could help build robust
registration. On the other hand, the registration algo-
rithm can be improved using fine-tuned parameters
or other outlier filters.

• Multi-sensor fusion for a more accurate localiza-
tion system. Generally, inertial measurement unit or
other odometry modules can help build a more com-
plete system, i.e., providing a high-frequency motion
model, which will definitely improve the localization
performance.
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